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Rydberg-derived processes, which generally occur only in 
tetrasubstituted aikenes.4 It thus appears that neither the 
7r,ir* nor 7r,R(3s) state leads to migration. It is perhaps sig­
nificant that a strain in cycloalkenes and alkylidenecycloal-
kanes leads to low-lying TT -* a* transitions.3 Thus the 
emergence of the migration process in alkylidenecyclopen-
tanes may be due, at least in part, to the emergence of the 
TT,a* state as the lowest lying singlet excited state. Work 
continues on identification of the excited state involved. 

It must be cautioned, however, that not all light-induced 
positional isomerizations of aikenes involve exclusively an 
intramolecular hydrogen shift. Thus, although l-methylcy-
clohexene (13) affords the positional isomers 14 and 15 on 
irradiation in ether or hydrocarbon solvent (13 and 6%, re­
spectively), formation of 14 has been found to occur with 
substantial loss of deuterium from the labeled derivative 
13-^3 (Scheme II). The difference in this case is almost 
surely associated with the now familiar tendency of cyclo-
hexenes to* undergo photoreaction via a highly strained 
twisted intermediate and probably involves initial cis —• 
trans isomerization followed by hydrogen atom abstraction 
as shown. The partial retention of deuterium in 14, accom­
panied by the formation of 15, indicates that [l,3]-sigma-
tropic hydrogen shifts occur in competition with the inter-
molecular pathway.12 
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Synthesis and Crystal Structure of a Novel 
Electron-Rich Nido Trimetallocarborane 

Sir: 

Recent work in these laboratories has established the 
ability of both borane and monocarbon carborane ligands to 
stabilize formal (CsHsNiJ3+ vertices in metallocarborane 
polyhedra.1"6 These studies have shown that {CsHsNij may 
replace |CH| in a heteroborane environment, with retention 
of the major chemical features of the polyhedral framework 
(including the capacity to undergo polyhedral rearrange­
ment7), as previously demonstrated8 for IC5H5C0) and 
JBHj. We have investigated the reaction of 2-carba-nido-
hexaborane(9), CB5H9, with nickelocene and report here 
the synthesis and x-ray crystal structure of the first trime­
tallocarborane containing nickel,9 (CsHsNi)JCBsH6. 

The reaction of CB5H910 with nickelocene and sodium 
amalgam in tetrahydrofuran afforded a mixture of prod­
ucts. Diamagnetic, air stable (CsHsNi)3CBsH6 (I) was iso­
lated in low yield by column chromatography on silica gel. 
The mass spectrum exhibited a cutoff at m/e 448 corre­
sponding to the 12Ci6

1H2I11B5
60Ni1

+ ion. Anal. Calcd: C, 
43.33; H, 4.77; Ni, 39.71. Found: C, 42.70; H, 5.00; Ni, 
40.32. The 60-MHz 1H NMR spectrum (acetone-^) con­
tained sharp singlets of relative area 2:1 at T 4.85 and 5.07, 
respectively, which were assigned to the cyclopentadienyl 
moieties. The 80.5^MHz 11B NMR spectrum contained res­
onances of area 1:2:2 at —78.5, —26.2, and +9.5 ppm, rela­
tive to Et2O-BF3. Ambiguous NMR data and the novel 
electron-rich nature (vide infra) of this metallocarborane 
led us to determine the structure via a single-crystal x-ray 
diffraction study. 

A well-formed green-black crystal of the compound was 
mounted on a Syntex Pl automated diffractometer. The 
complex was found to crystallize in the centrosymmetric or-
thorhombic space group Pnma with unit cell dimensions a 
= 7.518 (1), b = 14.740 (2), and c = 15.711 (3) A at 26 
0C. The measured density of 1.70 (2) g cm - 3 agreed with 
the calculated density of 1.692 g cm - 3 for Z = 4. 

A total of 1840 reflections (Mo Ka radiation) with inten­
sities greater than three times their standard deviations was 
used in the solution and refinement of the structure. Con­
ventional Patterson, Fourier, and least-squares techniques 
have resulted in R = 3.16%, Rw - 3.93%. All the hydrogen 
atoms were located and refined. A final difference Fourier 
map showed no significant features. Full details of the re­
finement procedure will be discussed in a subsequent publi­
cation. Table I summarizes important polyhedral bond dis­
tances and angles. The cyclopentadienyl rings were found to 
be planar within experimental error and showed no unusual 
features (average Ni-C = 2.13 (3) A, average C-C = 1.415 
(9) A). Complex I is the first crystallographically charac­
terized trimetallocarborane, and represents the only exam­
ple of the synthesis of a trimetallocarborane by the direct 
insertion of three transition metal atoms into a nido carbo­
rane. 

The molecular units are bisected by crystallographic mir­
ror planes, in congruence with the molecular plane of sym-

Table I. Bond Distances (A) and Angles (deg) 
Ni6-Ni7 
Ni6-Ni8 
Ni6-B2 
Ni6-B3 
Ni6-B9 
Ni7-B3 
Ni7-B9 
Cl-B 2 
C1-B3 

2.404(1) 
3.250(1) 
2.077 (4) 
2.051 (4) 
2.043 (3) 
2.070(3) 
2.991 (5) 
1.634(6) 
1.618(5) 

B2-B3 
B2-B5 
B2-B9 
B3-B4 

Ni6-Ni7 
Ni6-B9 
B9-Ni6-

-Ni8 
-Ni8 
-Ni7 

1.916(5) 
1.798(9) 
1.735(6) 
1.977(8) 

85.07 (2) 
105.4(2) 

84.1 (1) 
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Figure 1. Molecular geometry of H(Wo-(C5H5Ni)3CB5H6. Hydrogen 
atoms have been omitted. 

metry established from the NMR data. The structure (Fig­
ure 1) consists of a nine-vertex "opened", or nido, poly­
hedron, which can be derived from a tricapped trigonal 
prism by elongation of the Ni7-B9 polyhedral edge. The 
polyhedron is best described as a distorted monocapped 
square antiprism. Figure 2 sho\vs a top view of the four-
membered open face, composed of Ni6, Ni7, Ni8 and B9. 

Because JCsH5NiJ is formally isoelectronic with JCHj 
(with regard to the number of electrons donated to poly­
hedral bonding7), I is analogous to the hypothetical species 
C4B5H9. Thus the trimetallocarborane possesses two more 
electrons than required for a closo geometry, and is predict­
e d 7 " to be nido, as crystallographically observed. However, 
the nido configuration is achieved through the theoretical 
elongation of the Ni7-B9 polyhedral edge to generate a 
four-membered open face, rather than by the elongation of 
two edges (such as Ni7-B3 and Ni7-B4) to generate a five-
membered open face. This latter nido geometry has been 
predicted"3 for C4B5H9, postulated12 for the known borane 
anion, B 9 Hi 2

- , and crystallographically shown13 for 
C2B7H9(CH3)2, and was not found here. It is interesting 
that molecular orbital calculations'4 performed on B 9 H 9

2 -

indicated that upon two-electron reduction the preferred 
structure would be the C^ monocapped square antiprism. 
Presented here is the first confirmed example of this geome­
try in polyhedral borane chemistry. These observations may 
be pertinent to the determination of how the closo nine-ver­
tex polyhedron opens upon the addition of two electrons. In 
fact, we have observed15 that B 9 H 9

2 - opens in the presence 
of [CsHsNiCO]2 to produce the previously reported6 me-
talloborane anion [1-(CsHs)-I-NiB9H9] - . We note that I 
contains all three nickel atoms at low-coordinate polyhedral 
vertices, further evidence of the ability,2""4 and even prefer­
ence,6 of (CsHsNi) to reside in a low coordinate position. 

Complex I can formally be constructed from the known 
metallocarborane16 (CsH5Ni1 1 1^C2B5H? by the replace­
ment of a |CH| 3 + vertex with an "isoelectronic" (vide 
supra) (CsH5NiJ3+ vertex. Thus it can be regarded as a for­
mal mixed valence Ni(III)-Ni(III)-Ni(IV) complex. The 
near-infrared spectrum showed a broad band in the range 
800-1400 nm (Xmax 850 nm, t 700), indicating the possibili­
ty of mixed valence charge transfer.17 Estimates of the in­
teraction parameter,17 a, indicate that significant mixed va­
lence interactions have been induced in this metallocarbo­
rane. Further studies are in progress to determine the extent 
of the valence derealization. These crystallographic results 
imply that (C5H5Ni)2C2B5H? would also possess a nido ge­
ometry, rather than the proposed closo structure. Based on 
the NMR data,16 a probable structure would then be 8,9-

N18 Ni6 

Figure 2. A view of the polyhedron approximately normal to the nido 
face. Cyclopentadienyl groups and hydrogen atoms have been omitted. 

(C5H5Ni)2-6,7-C2B5H7, using the numbering system in 
Figure 1. It is unfortunate that no electronic spectral data 
for (CsHsNi)2C2B5H? are available for comparison. 

Electron-rich metallocarboranes of the formula 
[Cu(C2B9Hii)2]"~ (n = 1, 2) were found to possess 
"slipped sandwich" structures18 containing weak Cu-C in­
teractions of length ~2.52 A. Our results indicate that elec­
tronic effects upon geometry are more pronounced in the 
smaller polyhedral systems, as fewer atoms are available to 
disperse excess electron density. 
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